ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1308.3568
48
4

A Global Homogeneity Test for High-Dimensional Linear Regression

16 August 2013
Camille Charbonnier
Nicolas Verzélen
Fanny Villers
ArXivPDFHTML
Abstract

This paper is motivated by the comparison of genetic networks based on microarray samples. The aim is to test whether the differences observed between two inferred Gaussian graphical models come from real differences or arise from estimation uncertainties. Adopting a neighborhood approach, we consider a two-sample linear regression model with random design and propose a procedure to test whether these two regressions are the same. Relying on multiple testing and variable selection strategies, we develop a testing procedure that applies to high-dimensional settings where the number of covariates ppp is larger than the number of observations n1n_1n1​ and n2n_2n2​ of the two samples. Both type I and type II errors are explicitely controlled from a non-asymptotic perspective and the test is proved to be minimax adaptive to the sparsity. The performances of the test are evaluated on simulated data. Moreover, we illustrate how this procedure can be used to compare genetic networks on Hess \emph{et al} breast cancer microarray dataset.

View on arXiv
Comments on this paper