ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1308.6780
74
27
v1v2v3 (latest)

Approximate Bayesian Model Selection with the Deviance Statistic

30 August 2013
L. Held
Daniel Sabanés Bové
I. Gravestock
ArXiv (abs)PDFHTML
Abstract

Bayesian model selection poses two main challenges: the specification of parameter priors for all models, and the computation of the resulting Bayes factors between models. There is now a large literature on automatic and objective parameter priors in the linear model. One important class are ggg-priors, which were recently extended from linear to generalized linear models (GLMs). We show that the resulting Bayes factors can be approximated by test-based Bayes factors (Johnson [Scand. J. Stat. 35 (2008) 354-368]) using the deviance statistics of the models. To estimate the hyperparameter ggg, we propose empirical and fully Bayes approaches and link the former to minimum Bayes factors and shrinkage estimates from the literature. Furthermore, we describe how to approximate the corresponding posterior distribution of the regression coefficients based on the standard GLM output. We illustrate the approach with the development of a clinical prediction model for 30-day survival in the GUSTO-I trial using logistic regression.

View on arXiv
Comments on this paper