ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1311.3669
38
266

Scalable Influence Estimation in Continuous-Time Diffusion Networks

14 November 2013
Nan Du
Le Song
Manuel Gomez Rodriguez
H. Zha
ArXivPDFHTML
Abstract

If a piece of information is released from a media site, can it spread, in 1 month, to a million web pages? This influence estimation problem is very challenging since both the time-sensitive nature of the problem and the issue of scalability need to be addressed simultaneously. In this paper, we propose a randomized algorithm for influence estimation in continuous-time diffusion networks. Our algorithm can estimate the influence of every node in a network with |V| nodes and |E| edges to an accuracy of ε\varepsilonε using n=O(1/ε2)n=O(1/\varepsilon^2)n=O(1/ε2) randomizations and up to logarithmic factors O(n|E|+n|V|) computations. When used as a subroutine in a greedy influence maximization algorithm, our proposed method is guaranteed to find a set of nodes with an influence of at least (1-1/e)OPT-2ε\varepsilonε, where OPT is the optimal value. Experiments on both synthetic and real-world data show that the proposed method can easily scale up to networks of millions of nodes while significantly improves over previous state-of-the-arts in terms of the accuracy of the estimated influence and the quality of the selected nodes in maximizing the influence.

View on arXiv
Comments on this paper