ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1311.4472
41
4

A Component Lasso

18 November 2013
Nadine Hussami
Robert Tibshirani
ArXivPDFHTML
Abstract

We propose a new sparse regression method called the component lasso, based on a simple idea. The method uses the connected-components structure of the sample covariance matrix to split the problem into smaller ones. It then solves the subproblems separately, obtaining a coefficient vector for each one. Then, it uses non-negative least squares to recombine the different vectors into a single solution. This step is useful in selecting and reweighting components that are correlated with the response. Simulated and real data examples show that the component lasso can outperform standard regression methods such as the lasso and elastic net, achieving a lower mean squared error as well as better support recovery.

View on arXiv
Comments on this paper