ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1312.5578
317
10
v1v2v3v4 (latest)

Multimodal Transitions for Generative Stochastic Networks

International Conference on Learning Representations (ICLR), 2013
19 December 2013
Sherjil Ozair
Weitong Chen
Yoshua Bengio
ArXiv (abs)PDFHTML
Abstract

Generative Stochastic Networks (GSNs) have been recently introduced as an alternative to traditional probabilistic modeling: instead of parametrizing the data distribution directly, one parametrizes a transition operator for a Markov chain whose stationary distribution is an estimator of the data generating distribution. The result of training is therefore a machine that generates samples through this Markov chain. However, the previously introduced GSN consistency theorems suggest that in order to capture a wide class of distributions, the transition operator in general should be multimodal, something that has not been done before this paper. We introduce for the first time multimodal transition distributions for GSNs, in particular using models in the NADE family (Neural Autoregressive Density Estimator) as output distributions of the transition operator. A NADE model is related to an RBM (and can thus model multimodal distributions) but its likelihood (and likelihood gradient) can be computed easily. The parameters of the NADE are obtained as a learned function of the previous state of the learned Markov chain. Experiments clearly illustrate the advantage of such multimodal transition distributions over unimodal GSNs.

View on arXiv
Comments on this paper