ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1312.5658
160
43
v1v2v3 (latest)

A shrinkage-thresholding Metropolis adjusted Langevin algorithm for Bayesian variable selection

19 December 2013
Amandine Schreck
G. Fort
Sylvain Le Corff
Eric Moulines
ArXiv (abs)PDFHTML
Abstract

This paper introduces a new Markov Chain Monte Carlo method to perform Bayesian variable selection in high dimensional settings. The algorithm is a Hastings-Metropolis sampler with a proposal mechanism which combines (i) a Metropolis adjusted Langevin step to propose local moves associated with the differentiable part of the target density with (ii) a shrinkage-thresholding step based on the non-differentiable part of the target density which provides sparse solutions such that small components are shrunk toward zero. This allows to sample from distributions on spaces with different dimensions by actually setting some components to zero. The performances of this new procedure are illustrated with both simulated and real data sets. The geometric ergodicity of this new transdimensional Markov Chain Monte Carlo sampler is also established.

View on arXiv
Comments on this paper