ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1312.5891
52
9

The Sparse Principal Component of a Constant-rank Matrix

20 December 2013
Megasthenis Asteris
Dimitris Papailiopoulos
G. N. Karystinos
ArXiv (abs)PDFHTML
Abstract

The computation of the sparse principal component of a matrix is equivalent to the identification of its principal submatrix with the largest maximum eigenvalue. Finding this optimal submatrix is what renders the problem NP{\mathcal{NP}}NP-hard. In this work, we prove that, if the matrix is positive semidefinite and its rank is constant, then its sparse principal component is polynomially computable. Our proof utilizes the auxiliary unit vector technique that has been recently developed to identify problems that are polynomially solvable. Moreover, we use this technique to design an algorithm which, for any sparsity value, computes the sparse principal component with complexity O(ND+1){\mathcal O}\left(N^{D+1}\right)O(ND+1), where NNN and DDD are the matrix size and rank, respectively. Our algorithm is fully parallelizable and memory efficient.

View on arXiv
Comments on this paper