ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1402.4465
27
9

Concurrent Cube-and-Conquer

18 February 2014
P. Tak
Marijn J. H. Heule
Armin Biere
ArXiv (abs)PDFHTML
Abstract

Recent work introduced the cube-and-conquer technique to solve hard SAT instances. It partitions the search space into cubes using a lookahead solver. Each cube is tackled by a conflict-driven clause learning (CDCL) solver. Crucial for strong performance is the cutoff heuristic that decides when to switch from lookahead to CDCL. Yet, this offline heuristic is far from ideal. In this paper, we present a novel hybrid solver that applies the cube and conquer steps simultaneously. A lookahead and a CDCL solver work together on each cube, while communication is restricted to synchronization. Our concurrent cube-and-conquer solver can solve many instances faster than pure lookahead, pure CDCL and offline cube-and-conquer, and can abort early in favor of a pure CDCL search if an instance is not suitable for cube-and-conquer techniques.

View on arXiv
Comments on this paper