ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1403.6057
128
31
v1v2v3v4v5 (latest)

A new method for estimation and model selection: ρρρ-estimation

24 March 2014
Y. Baraud
Lucien Birgé
M. Sart
ArXiv (abs)PDFHTML
Abstract

The aim of this paper is to present a new estimation procedure that can be applied in many statistical frameworks including density and regression and which leads to both robust and optimal (or nearly optimal) estimators. In density estimation, they asymptotically coincide with the celebrated maximum likelihood estimators at least when the statistical model is regular enough and contains the true density to estimate. For very general models of densities, including non-compact ones, these estimators are robust with respect to the Hellinger distance and converge at optimal rate (up to a possible logarithmic factor) in all cases we know. In the regression setting, our approach improves upon the classical least squares from many aspects. In simple linear regression for example, it provides an estimation of the coefficients that are both robust to outliers and simultaneously rate-optimal (or nearly rate-optimal) for large class of error distributions including Gaussian, Laplace, Cauchy and uniform among others.

View on arXiv
Comments on this paper