Confidence intervals for high-dimensional inverse covariance estimation

Abstract
We propose methodology for statistical inference for low-dimensional parameters of sparse precision matrices in a high-dimensional setting. Our method leads to a non-sparse estimator of the precision matrix whose entries have a Gaussian limiting distribution. Asymptotic properties of the novel estimator are analyzed for the case of sub-Gaussian observations under a sparsity assumption on the entries of the true precision matrix and regularity conditions. Thresholding the de-sparsified estimator gives guarantees for edge selection in the associated graphical model. Performance of the proposed method is illustrated in a simulation study.
View on arXivComments on this paper