ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1404.3174
48
27
v1v2 (latest)

Model Based Clustering of High-Dimensional Binary Data

11 April 2014
Yang Tang
R. Browne
P. McNicholas
ArXiv (abs)PDFHTML
Abstract

We propose a mixture of latent trait models with common slope parameters (MCLT) for model-based clustering of high-dimensional binary data, a data type for which few established methods exist. Recent work on clustering of binary data, based on a ddd-dimensional Gaussian latent variable, is extended by incorporating common factor analyzers. Accordingly, our approach facilitates a low-dimensional visual representation of the clusters. We extend the model further by the incorporation of random block effects. The dependencies in each block are taken into account through block-specific parameters that are considered to be random variables. A variational approximation to the likelihood is exploited to derive a fast algorithm for determining the model parameters. Our approach is demonstrated on real and simulated data.

View on arXiv
Comments on this paper