ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1405.0182
44
59

Ergodicity of Approximate MCMC Chains with Applications to Large Data Sets

1 May 2014
Natesh S. Pillai
Aaron Smith
ArXivPDFHTML
Abstract

In many modern applications, difficulty in evaluating the posterior density makes performing even a single MCMC step slow. This difficulty can be caused by intractable likelihood functions, but also appears for routine problems with large data sets. Many researchers have responded by running approximate versions of MCMC algorithms. In this note, we develop quantitative bounds for showing the ergodicity of these approximate samplers. We then use these bounds to study the bias-variance trade-off of approximate MCMC algorithms. We apply our results to simple versions of recently proposed algorithms, including a variant of the "austerity" framework of Korratikara et al.

View on arXiv
Comments on this paper