ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1405.6017
33
38

Inverse regression for longitudinal data

23 May 2014
Ci-Ren Jiang
W. Yu
Jane-ling Wang
ArXivPDFHTML
Abstract

Sliced inverse regression (Duan and Li [Ann. Statist. 19 (1991) 505-530], Li [J. Amer. Statist. Assoc. 86 (1991) 316-342]) is an appealing dimension reduction method for regression models with multivariate covariates. It has been extended by Ferr\'{e} and Yao [Statistics 37 (2003) 475-488, Statist. Sinica 15 (2005) 665-683] and Hsing and Ren [Ann. Statist. 37 (2009) 726-755] to functional covariates where the whole trajectories of random functional covariates are completely observed. The focus of this paper is to develop sliced inverse regression for intermittently and sparsely measured longitudinal covariates. We develop asymptotic theory for the new procedure and show, under some regularity conditions, that the estimated directions attain the optimal rate of convergence. Simulation studies and data analysis are also provided to demonstrate the performance of our method.

View on arXiv
Comments on this paper