ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1405.7173
89
147

Nonparametric maximum likelihood approach to multiple change-point problems

28 May 2014
Changliang Zou
G. Yin
Long Feng
Zhaojun Wang
ArXiv (abs)PDFHTML
Abstract

In multiple change-point problems, different data segments often follow different distributions, for which the changes may occur in the mean, scale or the entire distribution from one segment to another. Without the need to know the number of change-points in advance, we propose a nonparametric maximum likelihood approach to detecting multiple change-points. Our method does not impose any parametric assumption on the underlying distributions of the data sequence, which is thus suitable for detection of any changes in the distributions. The number of change-points is determined by the Bayesian information criterion and the locations of the change-points can be estimated via the dynamic programming algorithm and the use of the intrinsic order structure of the likelihood function. Under some mild conditions, we show that the new method provides consistent estimation with an optimal rate. We also suggest a prescreening procedure to exclude most of the irrelevant points prior to the implementation of the nonparametric likelihood method. Simulation studies show that the proposed method has satisfactory performance of identifying multiple change-points in terms of estimation accuracy and computation time.

View on arXiv
Comments on this paper