Robust improper maximum likelihood: tuning, computation, and a comparison with other methods for robust Gaussian clustering

The two main topics of this paper are the introduction of the "optimally tuned improper maximum likelihood estimator" (OTRIMLE) for robust clustering based on the multivariate Gaussian model for clusters, and a comprehensive simulation study comparing the OTRIMLE to Maximum Likelihood in Gaussian mixtures with and without noise component, mixtures of t-distributions, and the TCLUST approach for trimmed clustering. The OTRIMLE uses an improper constant density for modelling outliers and noise. This can be chosen optimally so that the non-noise part of the data looks as close to a Gaussian mixture as possible. Some deviation from Gaussianity can be traded in for lowering the estimated noise proportion. Covariance matrix constraints and computation of the OTRIMLE are also treated. The ideas used for computing the OTRIMLE were applied with benefit to the competing methods, too, in order to make the approaches comparable. In the simulation study, all methods are confronted with setups in which their model assumptions were not exactly fulfilled (even apart from outliers), and in order to evaluate the experiments in a standardized way by misclassification rates, a new model-based definition of "true clusters" is introduced that deviates from the usual identification of mixture components with clusters. In the study, every method turns out to be superior for one or more setups, but the OTRIMLE achieves the most satisfactory overall performance.
View on arXiv