ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1406.7362
38
38

Exponentially Increasing the Capacity-to-Computation Ratio for Conditional Computation in Deep Learning

28 June 2014
Kyunghyun Cho
Yoshua Bengio
ArXivPDFHTML
Abstract

Many state-of-the-art results obtained with deep networks are achieved with the largest models that could be trained, and if more computation power was available, we might be able to exploit much larger datasets in order to improve generalization ability. Whereas in learning algorithms such as decision trees the ratio of capacity (e.g., the number of parameters) to computation is very favorable (up to exponentially more parameters than computation), the ratio is essentially 1 for deep neural networks. Conditional computation has been proposed as a way to increase the capacity of a deep neural network without increasing the amount of computation required, by activating some parameters and computation "on-demand", on a per-example basis. In this note, we propose a novel parametrization of weight matrices in neural networks which has the potential to increase up to exponentially the ratio of the number of parameters to computation. The proposed approach is based on turning on some parameters (weight matrices) when specific bit patterns of hidden unit activations are obtained. In order to better control for the overfitting that might result, we propose a parametrization that is tree-structured, where each node of the tree corresponds to a prefix of a sequence of sign bits, or gating units, associated with hidden units.

View on arXiv
Comments on this paper