ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1407.1531
94
24
v1v2 (latest)

The jump set under geometric regularisation. Part 1: Basic technique and first-order denoising

6 July 2014
T. Valkonen
ArXiv (abs)PDFHTML
Abstract

Let u∈\mboxBV(Ω)u \in \mbox{BV}(\Omega)u∈\mboxBV(Ω) solve the total variation denoising problem with L2L^2L2-squared fidelity and data fff. Caselles et al. [Multiscale Model. Simul. 6 (2008), 879--894] have shown the containment Hm−1(Ju∖Jf)=0\mathcal{H}^{m-1}(J_u \setminus J_f)=0Hm−1(Ju​∖Jf​)=0 of the jump set JuJ_uJu​ of uuu in that of fff. Their proof unfortunately depends heavily on the co-area formula, as do many results in this area, and as such is not directly extensible to higher-order, curvature-based, and other advanced geometric regularisers, such as total generalised variation (TGV) and Euler's elastica. These have received increased attention in recent times due to their better practical regularisation properties compared to conventional total variation or wavelets. We prove analogous jump set containment properties for a general class of regularisers. We do this with novel Lipschitz transformation techniques, and do not require the co-area formula. In the present Part 1 we demonstrate the general technique on first-order regularisers, while in Part 2 we will extend it to higher-order regularisers. In particular, we concentrate in this part on TV and, as a novelty, Huber-regularised TV. We also demonstrate that the technique would apply to non-convex TV models as well as the Perona-Malik anisotropic diffusion, if these approaches were well-posed to begin with.

View on arXiv
Comments on this paper