ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1407.2490
53
299
v1v2 (latest)

On Gridless Sparse Methods for Line Spectral Estimation From Complete and Incomplete Data

9 July 2014
Zai Yang
Lihua Xie
ArXiv (abs)PDFHTML
Abstract

This paper is concerned about sparse, continuous frequency estimation in line spectral estimation, and focused on developing gridless sparse methods which overcome grid mismatches and correspond to limiting scenarios of existing grid-based approaches, e.g., ℓ1\ell_1ℓ1​ optimization and SPICE, with an infinitely dense grid. We generalize AST (atomic-norm soft thresholding) to the case of nonconsecutively sampled data (incomplete data) inspired by recent atomic norm based techniques. We present a gridless version of SPICE (gridless SPICE, or GLS), which is applicable to both complete and incomplete data in the absence of noise variance. We further prove the equivalence between GLS and atomic norm-based techniques under different assumptions of noise. Moreover, we extend GLS to a systematic framework consisting of model order selection and robust frequency estimation, and present feasible algorithms for AST and GLS. Numerical simulations are provided to validate our theoretical analysis and demonstrate performance of our methods compared to existing ones.

View on arXiv
Comments on this paper