19
19

DMVP: Foremost Waypoint Coverage of Time-Varying Graphs

Abstract

We consider the Dynamic Map Visitation Problem (DMVP), in which a team of agents must visit a collection of critical locations as quickly as possible, in an environment that may change rapidly and unpredictably during the agents' navigation. We apply recent formulations of time-varying graphs (TVGs) to DMVP, shedding new light on the computational hierarchy RBP\mathcal{R} \supset \mathcal{B} \supset \mathcal{P} of TVG classes by analyzing them in the context of graph navigation. We provide hardness results for all three classes, and for several restricted topologies, we show a separation between the classes by showing severe inapproximability in R\mathcal{R}, limited approximability in B\mathcal{B}, and tractability in P\mathcal{P}. We also give topologies in which DMVP in R\mathcal{R} is fixed parameter tractable, which may serve as a first step toward fully characterizing the features that make DMVP difficult.

View on arXiv
Comments on this paper