117

Level-based Analysis of Genetic Algorithms and other Search Processes

bioRxiv (bioRxiv), 2014
Abstract

The fitness-level technique is a simple and old way to derive upper bounds for the expected runtime of simple elitist evolutionary algorithms (EAs). Recently, the technique has been adapted to deduce the runtime of algorithms with non-elitist populations and unary variation operators. In this paper, we show that the restriction to unary variation operators can be removed. This gives rise to a much more general analytical tool which is applicable to a wide range of search processes. As introductory examples, we provide simple runtime analyses of many variants of the Genetic Algorithm on well-known benchmark functions, such as OneMax, LeadingOnes, and the sorting problem.

View on arXiv
Comments on this paper