ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1408.0324
24
121

To Adjust or Not to Adjust? Sensitivity Analysis of M-Bias and Butterfly-Bias

2 August 2014
Peng Ding
Luke W. Miratrix
    CML
ArXivPDFHTML
Abstract

"M-Bias," as it is called in the epidemiologic literature, is the bias introduced by conditioning on a pretreatment covariate due to a particular "M-Structure" between two latent factors, an observed treatment, an outcome, and a "collider." This potential source of bias, which can occur even when the treatment and the outcome are not confounded, has been a source of considerable controversy. We here present formulae for identifying under which circumstances biases are inflated or reduced. In particular, we show that the magnitude of M-Bias in linear structural equation models tends to be relatively small compared to confounding bias, suggesting that it is generally not a serious concern in many applied settings. These theoretical results are consistent with recent empirical findings from simulation studies. We also generalize the M-Bias setting (1) to allow for the correlation between the latent factors to be nonzero, and (2) to allow for the collider to be a confounder between the treatment and the outcome. These results demonstrate that mild deviations from the M-Structure tend to increase confounding bias more rapidly than M-Bias, suggesting that choosing to condition on any given covariate is generally the superior choice. As an application, we re-examine a controversial example between Professors Donald Rubin and Judea Pearl.

View on arXiv
Comments on this paper