ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1408.2467
168
19
v1v2 (latest)

Inequality-Constrained Matrix Completion: Adding the Obvious Helps!

11 August 2014
Jakub Mareˇcek
Peter Richtárik
Martin Takáč
ArXiv (abs)PDFHTML
Abstract

We propose imposing box constraints on the individual elements of the unknown matrix in the matrix completion problem and present a number of natural applications, ranging from collaborative filtering under interval uncertainty to computer vision. Moreover, we design an alternating direction parallel coordinate descent method (MACO) for a smooth unconstrained optimization reformulation of the problem. In large scale numerical experiments in collaborative filtering under uncertainty, our method obtains solution with considerably smaller errors compared to classical matrix completion with equalities. We show that, surprisingly, seemingly obvious and trivial inequality constraints, when added to the formulation, can have a large impact. This is demonstrated on a number of machine learning problems.

View on arXiv
Comments on this paper