35
0

The critical threshold level on Kendall's tau statistic concerning minimax estimation of sparse correlation matrices

Abstract

Let X1,...,XnRpX_1,...,X_n\in\mathbb{R}^{p} be a sample from an elliptical distribution with correlation matrix ρ\rho and Kendall's tau correlation matrix τ\tau such that the distributions of the components Xi1X_{i1}, i=1,...,pi=1,...,p, have no atoms. Then sin(π2τ^ij)\sin(\frac{\pi}{2}\hat\tau_{ij}) is a well-behaved estimator for the entry ρij\rho_{ij}, where τ^ij\hat\tau_{ij} is Kendall's tau sample correlation based on (Xi1,Xj1),...,(Xin,Xjn)(X_{i1},X_{j1}),...,(X_{in},X_{jn}). We study the family of entrywise threshold estimators {ρ^αα>0}\{\hat\rho_\alpha|\alpha>0\}, where ρ^α=:ρ^=(ρ^ij)\hat\rho_\alpha=:\hat\rho=(\hat\rho_{ij}) consists of the entries \hat\rho_{ij}:=\sin\left(\frac{\pi}{2}\hat\tau_{ij}\right)\mathrm{1}\left\{\left|\sin\left(\frac{\pi}{2}\hat\tau_{ij}\right)\right|>\alpha\sqrt{\frac{\log p}{n}}\right\} \text{ for }i\neq j\text{ and }\hat\rho_{ii}=1. In particular, we raise the question how large the threshold constant α\alpha needs to be so that ρ^\hat\rho attains the minimax rate under the Frobenius norm over all permissible elliptical distributions, which suffice a sparsity condition on the rows of the correlation matrix ρ\rho. It is shown that ρ^\hat\rho achieves the optimal rate cn,p(logpn)1q/2c_{n,p}(\frac{\log p}{n})^{1-q/2} if α>π\alpha>\pi, where the parameters cn,pc_{n,p} and qq depend on the class of sparse correlation matrices. For Gaussian observations we even establish a critical threshold constant, i.e. we identify a constant α>0\alpha^\ast>0 such that the proposed estimator attains the minimax rate for α>α\alpha>\alpha^\ast but in general not for α<α\alpha<\alpha^\ast. This critical value α\alpha^\ast is given by 2π3\frac{\sqrt{2}\pi}{3}.

View on arXiv
Comments on this paper