ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1408.6179
69
114

Evaluating Neural Word Representations in Tensor-Based Compositional Settings

26 August 2014
Dmitrijs Milajevs
Dimitri Kartsaklis
M. Sadrzadeh
Matthew Purver
    CoGe
ArXivPDFHTML
Abstract

We provide a comparative study between neural word representations and traditional vector spaces based on co-occurrence counts, in a number of compositional tasks. We use three different semantic spaces and implement seven tensor-based compositional models, which we then test (together with simpler additive and multiplicative approaches) in tasks involving verb disambiguation and sentence similarity. To check their scalability, we additionally evaluate the spaces using simple compositional methods on larger-scale tasks with less constrained language: paraphrase detection and dialogue act tagging. In the more constrained tasks, co-occurrence vectors are competitive, although choice of compositional method is important; on the larger-scale tasks, they are outperformed by neural word embeddings, which show robust, stable performance across the tasks.

View on arXiv
Comments on this paper