ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1409.3821
97
38
v1v2v3 (latest)

Computational Implications of Reducing Data to Sufficient Statistics

12 September 2014
Andrea Montanari
ArXiv (abs)PDFHTML
Abstract

Given a large dataset and an estimation task, it is common to pre-process the data by reducing them to a set of sufficient statistics. This step is often regarded as straightforward and advantageous (in that it simplifies statistical analysis). I show that -on the contrary- reducing data to sufficient statistics can change a computationally tractable estimation problem into an intractable one. I discuss connections with recent work in theoretical computer science, and implications for some techniques to estimate graphical models.

View on arXiv
Comments on this paper