ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1410.5137
88
228

On Iterative Hard Thresholding Methods for High-dimensional M-Estimation

20 October 2014
Prateek Jain
Ambuj Tewari
Purushottam Kar
ArXivPDFHTML
Abstract

The use of M-estimators in generalized linear regression models in high dimensional settings requires risk minimization with hard L0L_0L0​ constraints. Of the known methods, the class of projected gradient descent (also known as iterative hard thresholding (IHT)) methods is known to offer the fastest and most scalable solutions. However, the current state-of-the-art is only able to analyze these methods in extremely restrictive settings which do not hold in high dimensional statistical models. In this work we bridge this gap by providing the first analysis for IHT-style methods in the high dimensional statistical setting. Our bounds are tight and match known minimax lower bounds. Our results rely on a general analysis framework that enables us to analyze several popular hard thresholding style algorithms (such as HTP, CoSaMP, SP) in the high dimensional regression setting. We also extend our analysis to a large family of "fully corrective methods" that includes two-stage and partial hard-thresholding algorithms. We show that our results hold for the problem of sparse regression, as well as low-rank matrix recovery.

View on arXiv
Comments on this paper