ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1410.6975
93
5

Notes on using Determinantal Point Processes for Clustering with Applications to Text Clustering

26 October 2014
Apoorv Agarwal
A. Choromańska
K. Choromanski
ArXiv (abs)PDFHTML
Abstract

In this paper, we compare three initialization schemes for the KMEANS clustering algorithm: 1) random initialization (KMEANSRAND), 2) KMEANS++, and 3) KMEANSD++. Both KMEANSRAND and KMEANS++ have a major that the value of k needs to be set by the user of the algorithms. (Kang 2013) recently proposed a novel use of determinantal point processes for sampling the initial centroids for the KMEANS algorithm (we call it KMEANSD++). They, however, do not provide any evaluation establishing that KMEANSD++ is better than other algorithms. In this paper, we show that the performance of KMEANSD++ is comparable to KMEANS++ (both of which are better than KMEANSRAND) with KMEANSD++ having an additional that it can automatically approximate the value of k.

View on arXiv
Comments on this paper