ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.6382
19
100

Mid-level Deep Pattern Mining

24 November 2014
Yao Li
Lingqiao Liu
Chunhua Shen
Anton Van Den Hengel
ArXivPDFHTML
Abstract

Mid-level visual element discovery aims to find clusters of image patches that are both representative and discriminative. In this work, we study this problem from the prospective of pattern mining while relying on the recently popularized Convolutional Neural Networks (CNNs). Specifically, we find that for an image patch, activations extracted from the first fully-connected layer of CNNs have two appealing properties which enable its seamless integration with pattern mining. Patterns are then discovered from a large number of CNN activations of image patches through the well-known association rule mining. When we retrieve and visualize image patches with the same pattern, surprisingly, they are not only visually similar but also semantically consistent. We apply our approach to scene and object classification tasks, and demonstrate that our approach outperforms all previous works on mid-level visual element discovery by a sizeable margin with far fewer elements being used. Our approach also outperforms or matches recent works using CNN for these tasks. Source code of the complete system is available online.

View on arXiv
Comments on this paper