ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.2684
29
1
v1v2v3 (latest)

HyperSpectral classification with adaptively weighted L1-norm regularization and spatial postprocessing

8 December 2014
Victor Stefan Aldea
ArXiv (abs)PDFHTML
Abstract

Sparse regression methods have been proven effective in a wide range of signal processing problems such as image compression, speech coding, channel equalization, linear regression and classification. In this paper a new convex method of hyperspectral image classification is developed based on the sparse unmixing algorithm SUnSAL for which a pixel adaptive L1-norm regularization term is introduced. To further enhance class separability, the algorithm is kernelized using an RBF kernel and the final results are improved by a combination of spatial pre and post-processing operations. It is shown that the proposed method is competitive with state of the art algorithms such as SVM-CK, KSOMP-CK and KSSP-CK.

View on arXiv
Comments on this paper