ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.2812
63
32

Unsupervised Induction of Semantic Roles within a Reconstruction-Error Minimization Framework

8 December 2014
Ivan Titov
Ehsan Khoddam
ArXiv (abs)PDFHTML
Abstract

We introduce a new approach to unsupervised estimation of feature-rich semantic role labeling models. Our model consists of two components: (1) an encoding component: a semantic role labeling model which predicts roles given a rich set of syntactic and lexical features; (2) a reconstruction component: a tensor factorization model which relies on roles to predict argument fillers. When the components are estimated jointly to minimize errors in argument reconstruction, the induced roles largely correspond to roles defined in annotated resources. Our method performs on par with most accurate role induction methods on English and German, even though, unlike these previous approaches, we do not incorporate any prior linguistic knowledge about the languages.

View on arXiv
Comments on this paper