ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.7449
27
929

Grammar as a Foreign Language

23 December 2014
Oriol Vinyals
Lukasz Kaiser
Terry Koo
Slav Petrov
Ilya Sutskever
Geoffrey E. Hinton
ArXivPDFHTML
Abstract

Syntactic constituency parsing is a fundamental problem in natural language processing and has been the subject of intensive research and engineering for decades. As a result, the most accurate parsers are domain specific, complex, and inefficient. In this paper we show that the domain agnostic attention-enhanced sequence-to-sequence model achieves state-of-the-art results on the most widely used syntactic constituency parsing dataset, when trained on a large synthetic corpus that was annotated using existing parsers. It also matches the performance of standard parsers when trained only on a small human-annotated dataset, which shows that this model is highly data-efficient, in contrast to sequence-to-sequence models without the attention mechanism. Our parser is also fast, processing over a hundred sentences per second with an unoptimized CPU implementation.

View on arXiv
Comments on this paper