ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1501.00312
27
191

Statistical consistency and asymptotic normality for high-dimensional robust M-estimators

1 January 2015
Po-Ling Loh
ArXivPDFHTML
Abstract

We study theoretical properties of regularized robust M-estimators, applicable when data are drawn from a sparse high-dimensional linear model and contaminated by heavy-tailed distributions and/or outliers in the additive errors and covariates. We first establish a form of local statistical consistency for the penalized regression estimators under fairly mild conditions on the error distribution: When the derivative of the loss function is bounded and satisfies a local restricted curvature condition, all stationary points within a constant radius of the true regression vector converge at the minimax rate enjoyed by the Lasso with sub-Gaussian errors. When an appropriate nonconvex regularizer is used in place of an l_1-penalty, we show that such stationary points are in fact unique and equal to the local oracle solution with the correct support---hence, results on asymptotic normality in the low-dimensional case carry over immediately to the high-dimensional setting. This has important implications for the efficiency of regularized nonconvex M-estimators when the errors are heavy-tailed. Our analysis of the local curvature of the loss function also has useful consequences for optimization when the robust regression function and/or regularizer is nonconvex and the objective function possesses stationary points outside the local region. We show that as long as a composite gradient descent algorithm is initialized within a constant radius of the true regression vector, successive iterates will converge at a linear rate to a stationary point within the local region. Furthermore, the global optimum of a convex regularized robust regression function may be used to obtain a suitable initialization. The result is a novel two-step procedure that uses a convex M-estimator to achieve consistency and a nonconvex M-estimator to increase efficiency.

View on arXiv
Comments on this paper