Online Visual Tracking using Multiple Instance Learning with Instance Significance Estimation
- WSOD

Multiple Instance Learning (MIL) recently provides an appealing way to alleviate the drifting problem in visual tracking. Following the tracking-by-detection framework, an online MILBoost approach is developed that sequentially chooses weak classifiers by maximizing the bag likelihood. In this paper, we extend this idea towards incorporating the significance-coefficients of instances into the online MILBoost framework. First, instead of treating all instances equally, with each instance we associate a significance-coefficient that represents its contribution to the bag likelihood. The coefficients are estimated by a simple Bayesian formula that jointly considers the predictions from several standard MILBoost classifiers. Then, we follow the online boosting framework, and propose a new criterion for the selection of weak classifiers. Experiments with challenging public datasets show that the proposed method outperforms both existing MIL based and boosting based trackers.
View on arXiv