ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.03529
70
21
v1v2v3 (latest)

Scalable Stochastic Alternating Direction Method of Multipliers

12 February 2015
Shen-Yi Zhao
Wu-Jun Li
Zhi Zhou
ArXiv (abs)PDFHTML
Abstract

Stochastic alternating direction method of multipliers (ADMM), which visits only one sample or a mini-batch of samples each time, has recently been proved to achieve better performance than batch ADMM. However, most stochastic methods can only achieve a convergence rate O(1/T)O(1/\sqrt T)O(1/T​) on general convex problems,where T is the number of iterations. Hence, these methods are not scalable with respect to convergence rate (computation cost). There exists only one stochastic method, called SA-ADMM, which can achieve convergence rate O(1/T)O(1/T)O(1/T) on general convex problems. However, an extra memory is needed for SA-ADMM to store the historic gradients on all samples, and thus it is not scalable with respect to storage cost. In this paper, we propose a novel method, called scalable stochastic ADMM(SCAS-ADMM), for large-scale optimization and learning problems. Without the need to store the historic gradients, SCAS-ADMM can achieve the same convergence rate O(1/T)O(1/T)O(1/T) as the best stochastic method SA-ADMM and batch ADMM on general convex problems. Experiments on graph-guided fused lasso show that SCAS-ADMM can achieve state-of-the-art performance in real applications

View on arXiv
Comments on this paper