ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.04189
50
29
v1v2 (latest)

On the probability that all eigenvalues of Gaussian, Wishart, and double Wishart random matrices lie within an interval

14 February 2015
M. Chiani
ArXiv (abs)PDFHTML
Abstract

We derive the probability that all eigenvalues of a random matrix M\bf MM lie within an arbitrary interval [a,b][a,b][a,b], ψ(a,b)≜Pr⁡{a≤λmin⁡(M),λmax⁡(M)≤b}\psi(a,b)\triangleq\Pr\{a\leq\lambda_{\min}({\bf M}), \lambda_{\max}({\bf M})\leq b\}ψ(a,b)≜Pr{a≤λmin​(M),λmax​(M)≤b}, when M\bf MM is a real or complex finite dimensional Wishart, double Wishart, or Gaussian symmetric/Hermitian matrix. We give efficient recursive formulas allowing the exact evaluation of ψ(a,b)\psi(a,b)ψ(a,b) for Wishart matrices, even with large number of variates and degrees of freedom. We also prove that the probability that all eigenvalues are within the limiting spectral support (given by the Mar{\v{c}}enko-Pastur or the semicircle laws) tends for large dimensions to the universal values 0.69210.69210.6921 and 0.93970.93970.9397 for the real and complex cases, respectively. Applications include improved bounds for the probability that a Gaussian measurement matrix has a given restricted isometry constant in compressed sensing.

View on arXiv
Comments on this paper