ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.06134
316
81
v1v2v3 (latest)

Learning with Square Loss: Localization through Offset Rademacher Complexity

21 February 2015
Tengyuan Liang
Alexander Rakhlin
Karthik Sridharan
ArXiv (abs)PDFHTML
Abstract

We consider regression with square loss and general classes of functions without the boundedness assumption. We introduce a notion of offset Rademacher complexity that provides a transparent way to study localization both in expectation and in high probability. For any (possibly non-convex) class, the excess loss of a two-step estimator is shown to be upper bounded by this offset complexity through a novel geometric inequality. In the convex case, the estimator reduces to an empirical risk minimizer. The method recovers the results of \citep{RakSriTsy15} for the bounded case while also providing guarantees without the boundedness assumption.

View on arXiv
Comments on this paper