ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.06208
182
18

Nearly optimal classification for semimetrics

22 February 2015
Lee-Ad Gottlieb
A. Kontorovich
ArXiv (abs)PDFHTML
Abstract

We initiate the rigorous study of classification in semimetric spaces, which are point sets with a distance function that is non-negative and symmetric, but need not satisfy the triangle inequality. For metric spaces, the doubling dimension essentially characterizes both the runtime and sample complexity of classification algorithms --- yet we show that this is not the case for semimetrics. Instead, we define the {\em density dimension} and discover that it plays a central role in the statistical and algorithmic feasibility of learning in semimetric spaces. We present nearly optimal sample compression algorithms and use these to obtain generalization guarantees, including fast rates. The latter hold for general sample compression schemes and may be of independent interest.

View on arXiv
Comments on this paper