ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.06644
47
9
v1v2 (latest)

On The Identifiability of Mixture Models from Grouped Samples

23 February 2015
Robert A. Vandermeulen
Clayton D. Scott
ArXiv (abs)PDFHTML
Abstract

Finite mixture models are statistical models which appear in many problems in statistics and machine learning. In such models it is assumed that data are drawn from random probability measures, called mixture components, which are themselves drawn from a probability measure P over probability measures. When estimating mixture models, it is common to make assumptions on the mixture components, such as parametric assumptions. In this paper, we make no assumption on the mixture components, and instead assume that observations from the mixture model are grouped, such that observations in the same group are known to be drawn from the same component. We show that any mixture of m probability measures can be uniquely identified provided there are 2m-1 observations per group. Moreover we show that, for any m, there exists a mixture of m probability measures that cannot be uniquely identified when groups have 2m-2 observations. Our results hold for any sample space with more than one element.

View on arXiv
Comments on this paper