ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1503.02912
23
21

Approximate Bayesian inference in semiparametric copula models

10 March 2015
Clara Grazian
B. Liseo
ArXivPDFHTML
Abstract

We describe a simple method for making inference on a functional of a multivariate distribution. The method is based on a copula representation of the multivariate distribution and it is based on the properties of an Approximate Bayesian Monte Carlo algorithm, where the proposed values of the functional of interest are weighed in terms of their empirical likelihood. This method is particularly useful when the "true" likelihood function associated with the working model is too costly to evaluate or when the working model is only partially specified.

View on arXiv
Comments on this paper