Looking-backward probabilities for Gibbs-type exchangeable random partitions

Gibbs-type random probability measures and the exchangeable random partitions they induce represent the subject of a rich and active literature. They provide a probabilistic framework for a wide range of theoretical and applied problems that are typically referred to as species sampling problems. In this paper, we consider the class of looking-backward species sampling problems introduced in Lijoi et al. (Ann. Appl. Probab. 18 (2008) 1519-1547) in Bayesian nonparametrics. Specifically, given some information on the random partition induced by an initial sample from a Gibbs-type random probability measure, we study the conditional distributions of statistics related to the old species, namely those species detected in the initial sample and possibly re-observed in an additional sample. The proposed results contribute to the analysis of conditional properties of Gibbs-type exchangeable random partitions, so far focused mainly on statistics related to those species generated by the additional sample and not already detected in the initial sample.
View on arXiv