ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1504.01482
19
44

Deep Recurrent Neural Networks for Acoustic Modelling

7 April 2015
William Chan
Ian Lane
ArXivPDFHTML
Abstract

We present a novel deep Recurrent Neural Network (RNN) model for acoustic modelling in Automatic Speech Recognition (ASR). We term our contribution as a TC-DNN-BLSTM-DNN model, the model combines a Deep Neural Network (DNN) with Time Convolution (TC), followed by a Bidirectional Long Short-Term Memory (BLSTM), and a final DNN. The first DNN acts as a feature processor to our model, the BLSTM then generates a context from the sequence acoustic signal, and the final DNN takes the context and models the posterior probabilities of the acoustic states. We achieve a 3.47 WER on the Wall Street Journal (WSJ) eval92 task or more than 8% relative improvement over the baseline DNN models.

View on arXiv
Comments on this paper