ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1504.03461
67
68
v1v2 (latest)

On a generalization of the preconditioned Crank-Nicolson Metropolis algorithm

14 April 2015
Daniel Rudolf
Björn Sprungk
ArXiv (abs)PDFHTML
Abstract

Metropolis algorithms for approximate sampling of probability measures on infinite dimensional Hilbert spaces are considered and a generalization of the preconditioned Crank-Nicolson (pCN) proposal is introduced. The new proposal is able to incorporate information of the measure of interest. A numerical simulation of a Bayesian inverse problem indicates that a Metropolis algorithm with such a proposal performs independent of the state space dimension and the variance of the observational noise. Moreover, a qualitative convergence result is provided by a comparison argument for spectral gaps. In particular, it is shown that the generalization inherits geometric ergodicity from the Metropolis algorithm with pCN proposal.

View on arXiv
Comments on this paper