ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.02344
35
6
v1v2 (latest)

Stay on path: PCA along graph paths

8 June 2015
Megasthenis Asteris
Anastasios Kyrillidis
A. Dimakis
Han-Gyol Yi
B. Chandrasekaran
ArXiv (abs)PDFHTML
Abstract

We introduce a variant of (sparse) PCA in which the set of feasible support sets is determined by a graph. In particular, we consider the following setting: given a directed acyclic graph GGG on ppp vertices corresponding to variables, the non-zero entries of the extracted principal component must coincide with vertices lying along a path in GGG. From a statistical perspective, information on the underlying network may potentially reduce the number of observations required to recover the population principal component. We consider the canonical estimator which optimally exploits the prior knowledge by solving a non-convex quadratic maximization on the empirical covariance. We introduce a simple network and analyze the estimator under the spiked covariance model. We show that side information potentially improves the statistical complexity. We propose two algorithms to approximate the solution of the constrained quadratic maximization, and recover a component with the desired properties. We empirically evaluate our schemes on synthetic and real datasets.

View on arXiv
Comments on this paper