ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.06266
25
104

Uniform Asymptotic Inference and the Bootstrap After Model Selection

20 June 2015
R. Tibshirani
Alessandro Rinaldo
Robert Tibshirani
Larry A. Wasserman
ArXivPDFHTML
Abstract

Recently, Tibshirani et al. (2016) proposed a method for making inferences about parameters defined by model selection, in a typical regression setting with normally distributed errors. Here, we study the large sample properties of this method, without assuming normality. We prove that the test statistic of Tibshirani et al. (2016) is asymptotically valid, as the number of samples n grows and the dimension d of the regression problem stays fixed. Our asymptotic result holds uniformly over a wide class of nonnormal error distributions. We also propose an efficient bootstrap version of this test that is provably (asymptotically) conservative, and in practice, often delivers shorter intervals than those from the original normality-based approach. Finally, we prove that the test statistic of Tibshirani et al. (2016) does not enjoy uniform validity in a high-dimensional setting, when the dimension d is allowed grow.

View on arXiv
Comments on this paper