ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.08189
58
40
v1v2v3 (latest)

Correlation Clustering and Biclustering with Locally Bounded Errors

26 June 2015
Gregory J. Puleo
O. Milenkovic
ArXiv (abs)PDFHTML
Abstract

We consider a generalized version of the correlation clustering problem, defined as follows. Given a complete graph GGG whose edges are labeled with +++ or −-−, we wish to partition the graph into clusters while trying to avoid errors: +++ edges between clusters or −-− edges within clusters. Classically, one seeks to minimize the total number of such errors. We introduce a new framework that allows the objective to be a more general function of the number of errors at each vertex (for example, we may wish to minimize the number of errors at the worst vertex) and provide a rounding algorithm which converts "fractional clusterings" into discrete clusterings while causing only a constant-factor blowup in the number of errors at each vertex. This rounding algorithm yields constant-factor approximation algorithms for the discrete problem under a wide variety of objective functions.

View on arXiv
Comments on this paper