66
63

Bayesian Additive Regression Trees using Bayesian Model Averaging

Abstract

Bayesian Additive Regression Trees (BART) is a statistical sum of trees model. It can be considered a Bayesian version of machine learning tree ensemble methods where the individual trees are the base learners. However for data sets where the number of variables pp is large (e.g. p>5,000p>5,000) the algorithm can become prohibitively expensive, computationally. Another method which is popular for high dimensional data is random forests, a machine learning algorithm which grows trees using a greedy search for the best split points. However, as it is not a statistical model, it cannot produce probabilistic estimates or predictions. We propose an alternative algorithm for BART called BART-BMA, which uses Bayesian Model Averaging and a greedy search algorithm to produce a model which is much more efficient than BART for datasets with large pp. BART-BMA incorporates elements of both BART and random forests to offer a model-based algorithm which can deal with high-dimensional data. We have found that BART-BMA can be run in a reasonable time on a standard laptop for the "small nn large pp" scenario which is common in many areas of bioinformatics. We showcase this method using simulated data and data from two real proteomic experiments; one to distinguish between patients with cardiovascular disease and controls and another to classify agressive from non-agressive prostate cancer. We compare our results to their main competitors. Open source code written in R and Rcpp to run BART-BMA can be found at: https://github.com/BelindaHernandez/BART-BMA.git

View on arXiv
Comments on this paper