42
253

Fast Convergence of Regularized Learning in Games

Abstract

We show that natural classes of regularized learning algorithms with a form of recency bias achieve faster convergence rates to approximate efficiency and to coarse correlated equilibria in multiplayer normal form games. When each player in a game uses an algorithm from our class, their individual regret decays at O(T3/4)O(T^{-3/4}), while the sum of utilities converges to an approximate optimum at O(T1)O(T^{-1})--an improvement upon the worst case O(T1/2)O(T^{-1/2}) rates. We show a black-box reduction for any algorithm in the class to achieve O~(T1/2)\tilde{O}(T^{-1/2}) rates against an adversary, while maintaining the faster rates against algorithms in the class. Our results extend those of [Rakhlin and Shridharan 2013] and [Daskalakis et al. 2014], who only analyzed two-player zero-sum games for specific algorithms.

View on arXiv
Comments on this paper