ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1507.05796
63
27
v1v2v3v4v5 (latest)

Noisy Rumor Spreading and Plurality Consensus

21 July 2015
Pierre Fraigniaud
Emanuele Natale
ArXiv (abs)PDFHTML
Abstract

Error-correcting codes are efficient methods for handling \emph{noisy} communication channels in the context of technological networks. However, such elaborate methods differ a lot from the unsophisticated way biological entities are supposed to communicate. Yet, it has been recently shown by Feinerman, Haeupler, and Korman {[}PODC 2014{]} that complex coordination tasks such as \emph{rumor spreading} and \emph{majority consensus} can plausibly be achieved in biological systems subject to noisy communication channels, where every message transferred through a channel remains intact with small probability 12+ϵ\frac{1}{2}+\epsilon21​+ϵ, without using coding techniques. This result is a considerable step towards a better understanding of the way biological entities may cooperate. It has been nevertheless be established only in the case of 2-valued \emph{opinions}: rumor spreading aims at broadcasting a single-bit opinion to all nodes, and majority consensus aims at leading all nodes to adopt the single-bit opinion that was initially present in the system with (relative) majority. In this paper, we extend this previous work to kkk-valued opinions, for any k≥2k\geq2k≥2. Our extension requires to address a series of important issues, some conceptual, others technical. We had to entirely revisit the notion of noise, for handling channels carrying kkk-\emph{valued} messages. In fact, we precisely characterize the type of noise patterns for which plurality consensus is solvable. Also, a key result employed in the bivalued case by Feinerman et al. is an estimate of the probability of observing the most frequent opinion from observing the mode of a small sample. We generalize this result to the multivalued case by providing a new analytical proof for the bivalued case that is amenable to be extended, by induction, and that is of independent interest.

View on arXiv
Comments on this paper