ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1507.07880
47
46

Optimally Confident UCB: Improved Regret for Finite-Armed Bandits

28 July 2015
Tor Lattimore
ArXivPDFHTML
Abstract

I present the first algorithm for stochastic finite-armed bandits that simultaneously enjoys order-optimal problem-dependent regret and worst-case regret. Besides the theoretical results, the new algorithm is simple, efficient and empirically superb. The approach is based on UCB, but with a carefully chosen confidence parameter that optimally balances the risk of failing confidence intervals against the cost of excessive optimism.

View on arXiv
Comments on this paper