ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1508.00657
17
299

Improved Transition-Based Parsing by Modeling Characters instead of Words with LSTMs

4 August 2015
Miguel Ballesteros
Chris Dyer
Noah A. Smith
ArXivPDFHTML
Abstract

We present extensions to a continuous-state dependency parsing method that makes it applicable to morphologically rich languages. Starting with a high-performance transition-based parser that uses long short-term memory (LSTM) recurrent neural networks to learn representations of the parser state, we replace lookup-based word representations with representations constructed from the orthographic representations of the words, also using LSTMs. This allows statistical sharing across word forms that are similar on the surface. Experiments for morphologically rich languages show that the parsing model benefits from incorporating the character-based encodings of words.

View on arXiv
Comments on this paper